## Exercise 54

Find an equation of the tangent line to the curve at the given point.

$$
y=x e^{-x^{2}}, \quad(0,0)
$$

## Solution

A point on the tangent line is known, so all that's needed is its slope. Take a derivative of the given function

$$
\begin{aligned}
y^{\prime}=\frac{d}{d x}\left(x e^{-x^{2}}\right)=\left[\frac{d}{d x}(x)\right] e^{-x^{2}}+x\left[\frac{d}{d x}\left(e^{-x^{2}}\right)\right] & =(1) e^{-x^{2}}+x\left[e^{-x^{2}} \cdot \frac{d}{d x}\left(-x^{2}\right)\right] \\
& =e^{-x^{2}}+x\left[e^{-x^{2}} \cdot(-2 x)\right] \\
& =\left(1-2 x^{2}\right) e^{-x^{2}}
\end{aligned}
$$

and evaluate it at $x=0$.

$$
y^{\prime}(0)=(1-0) e^{0}=1
$$

Therefore, the equation of the tangent line to $y=x e^{-x^{2}}$ at $(0,0)$ is

$$
y-0=1(x-0) .
$$

Below is a graph showing the function and the tangent line.


